Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range.
نویسنده
چکیده
Human fingers have sufficiently more muscles than joints such that every fingertip force of submaximal magnitude can be produced by an infinite number of muscle coordination patterns. Nevertheless, the nervous system seems to effortlessly select muscle coordination patterns when sequentially producing fingertip forces of low, moderate, and maximal magnitude. The hypothesis of this study is that the selection of coordination patterns to produce submaximal forces is simplified by the appropriate modulation of the magnitude of a muscle coordination pattern capable of producing the largest expected fingertip force. In each of three directions, eight subjects were asked to sequentially produce fingertip forces of low, moderate, and maximal magnitude with their dominant forefinger. Muscle activity was described by fine-wire electromyograms (EMGs) simultaneously collected from all muscles of the forefinger. A muscle coordination pattern was defined as the vector list of the EMG activity of each muscle. For all force directions, statistically significant muscle coordination patterns similar to those previously reported for 100% of maximal fingertip forces were found for 50% of maximal voluntary force. Furthermore the coordination pattern and fingertip force vector magnitudes were highly correlated (r > 0.88). Average coordination pattern vectors at 50 and 100% of maximal force were highly correlated with each other, as well as with individual coordination pattern vectors in the ramp transitions preceding them. In contrast to this consistency of EMG coordination patterns, predictions using a musculoskeletal computer model of the forefinger show that force magnitudes </=50% of maximal fingertip force can be produced by coordination patterns drastically different from those needed for maximal force. Thus when modulating fingertip force magnitude across the voluntary range, the number of contributing muscles and the relative activity among them was not changed. Rather, the production of low and moderate forces seems to be simplified by appropriately scaling the magnitude of a coordination pattern capable of producing the highest force expected.
منابع مشابه
EMG-EMG coherence during three-digit grasping
40 Fingertip force control requires fine coordination of multiple hand muscles within 41 and across the digits. While the modulation of neural drive to hand muscles as a function 42 of force has been extensively studied, much less is known about the effects of fatigue on 43 the coordination of simultaneously active hand muscles. We asked eight subjects to 44 perform a fatiguing contraction by g...
متن کاملInfluence of fatigue on hand muscle coordination and EMG-EMG coherence during three-digit grasping.
Fingertip force control requires fine coordination of multiple hand muscles within and across the digits. While the modulation of neural drive to hand muscles as a function of force has been extensively studied, much less is known about the effects of fatigue on the coordination of simultaneously active hand muscles. We asked eight subjects to perform a fatiguing contraction by gripping a manip...
متن کاملNeural control of motion-to-force transitions with the fingertip.
The neural control of tasks such as rapid acquisition of precision pinch remains unknown. Therefore, we investigated the neural control of finger musculature when the index fingertip abruptly transitions from motion to static force production. Nine subjects produced a downward tapping motion followed by vertical fingertip force against a rigid surface. We simultaneously recorded three-dimension...
متن کاملMaximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks.
Numerous studies of limbs and fingers propose that force-velocity properties of muscle limit maximal voluntary force production during anisometric tasks, i.e., when muscles are shortening or lengthening. Although this proposition appears logical, our study on the simultaneous production of fingertip motion and force disagrees with this commonly held notion. We asked eight consenting adults to u...
متن کاملAnticipatory control of motion-to-force transitions with the fingertips adapts optimally to task difficulty.
Moving our fingertips toward objects to produce well-directed forces immediately upon contact is fundamental to dexterous manipulation. This apparently simple motion-to-force transition in fact involves a time-critical, predictive switch in control strategy. Given that dexterous manipulation must accommodate multiple mechanical conditions, we investigated whether and how this transition adapts ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 83 3 شماره
صفحات -
تاریخ انتشار 2000